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ABSTRACT 

 

Eating disorders —including anorexia nervosa (AN), bulimia nervosa, and binge eating 1 

disorder—are clinically distinct but exhibit symptom overlap and diagnostic crossover. 2 

Genomic analyses have mostly examined AN. We conducted the first genomic meta-3 

analysis of binge eating behaviour (BE; 39,279 cases, 1,227,436 controls), alongside new 4 

analyses of AN (24,223 cases, 1,243,971 controls) and its subtypes (all European 5 

ancestries). We identified six loci associated with BE, including loci associated with higher 6 

body mass index (BMI) and impulse-control behaviours. AN GWAS yielded eight loci, 7 

validating six loci. Subsequent polygenic risk score analysis demonstrated an association 8 

with AN in two East Asian ancestry cohorts. BE and AN exhibited similar positive genetic 9 

correlations with psychiatric disorders, but opposing genetic correlations with anthropometric 10 

traits. Most of the genetic signal in BE and AN was not shared with BMI. We have extended 11 

eating disorder genomics beyond AN; future work will incorporate multiple diagnoses and 12 

global ancestries.  13 
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Eating disorders include anorexia nervosa (AN), bulimia nervosa, and binge eating 1 

disorder, among others. They are diagnostically distinct, yet show considerable overlap in 2 

symptoms, as reflected in diagnostic migration over time 1–3. AN is characterised by low 3 

weight, fear of weight gain, and an inability to recognise the seriousness of the low weight. It 4 

has two subtypes, which both exhibit low weight achieved by caloric restriction and 5 

increased energy expenditure. In the binge eating/purging subtype (AN-BP), this is coupled 6 

with binge eating (BE) and/or purging behaviours, whereas the restricting subtype (AN-R) 7 

lacks these features. Bulimia nervosa occurs in individuals at normal or high weight and is 8 

characterised by the combination of BE and compensatory behaviours (e.g., fasting, self-9 

induced vomiting, laxative use, diuretic use). Binge eating disorder shares the BE 10 

component of bulimia nervosa and also occurs at both normal and high weights, but lacks 11 

recurrent compensatory behaviours 1. 12 

Genome-wide association studies (GWASs) of eating disorders have focused 13 

primarily on AN 4–7, in part due to its elevated mortality 8, with only a few GWASs of other 14 

eating disorders to date 9,10. The most recent AN GWAS 6 included 16,992 cases and 15 

identified eight genome-wide significant loci. Genetic correlations based on common single 16 

nucleotide polymorphisms (SNP-rgs) showed high correlations with other psychiatric 17 

disorders, and suggested that metabolic and anthropometric factors might also underlie AN 18 

pathophysiology 6,7. The metabolic aspect of AN is reflected by a positive SNP-rg with high-19 

density lipoprotein cholesterol and negative SNP-rgs with insulin resistance, leptin, and type 20 

2 diabetes. Importantly, these SNP-rgs were independent of body mass index (BMI), a 21 

significant finding given that low BMI is a defining feature of AN. 22 

To fully understand the genetic landscape of eating disorders, it is essential to 23 

advance beyond AN. A substantial genetic correlation between AN and bulimia nervosa has 24 

been shown in family and twin studies 11,12, suggesting that these phenotypes share genetic 25 

risk. This may partially reflect the presence of BE as a transdiagnostic symptom, common 26 

both to bulimia nervosa and to AN-BP. Here, we present the first GWAS of BE across 27 
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multiple cohorts. We additionally conducted an AN GWAS meta-analysis with augmented 1 

sample size and increased statistical power, and the first GWASs of explicitly defined AN 2 

subtypes (AN-R and AN-BP). We identified genetic commonalities and differences between 3 

BE and AN. 4 

 5 

RESULTS 6 

Summary of phenotypes 7 

We operationalised five phenotypes (Table 1): broadly-defined BE (BE-BROAD) and 8 

narrowly-defined BE (BE-NARROW), and AN, AN-R, and AN-BP. We primarily report results 9 

for BE-BROAD (which captures the common genetic component of BE with greater 10 

statistical power than BE-NARROW; Methods) and for AN. Analyses of BE-NARROW, AN-11 

R, and AN-BP are reported in Supplementary Results. We contrast our BE-BROAD results 12 

with those of a previous publication that assessed a model-derived BE phenotype in the 13 

Million Veteran Program 10 (Supplementary Material).  14 

  15 

Table 1 approximately here 16 

 17 

GWAS meta-analyses 18 

Our BE-BROAD GWAS included 17 European-ancestry datasets with 39,279 cases 19 

and 1,227,436 controls, assessing 6,244,919 common (minor allele frequency≥1%), high-20 

confidence (imputation INFO score>0.6), autosomal single nucleotide polymorphisms 21 

(SNPs; Supplementary Table 1). Conditional and joint analyses confirmed six independently 22 

associated loci (Figure 1; Table 2; Supplementary Figures 1-6; Supplementary Table 2). The 23 

liability-scale SNP-based heritability for BE-BROAD was 5% (SE=0.4%, assuming 24 

population prevalence of 4.5% 13). The intercept was 1.03, significantly >1 and the 25 

attenuation ratio was 0.14 (SE=0.04) (Supplementary Table 3). While an intercept >1 can 26 

indicate confounding, this ratio suggests that inflation was primarily due to polygenicity 14. 27 
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For AN, we identified eight independently associated loci in 26 European-ancestry 1 

datasets with 24,223 cases and 1,243,971 controls, across 6,926,820 common, high-2 

confidence, autosomal SNPs (Figure 1; Table 2; Supplementary Figures 7-14; 3 

Supplementary Tables 1 and 2). Six of these loci were detected in a previous AN GWAS 20 4 

and two were newly identified. Three previously significant loci (on chromosome 2 and 3 5 

from Watson et al 6, and on chromosome 12 from Duncan et al 7) did not reach genome-wide 6 

significance (P=2x10-7–6x10-7). The liability-scale SNP-based heritability was 13% 7 

(SE=0.7%, assuming population prevalence of 1.5% 15), with an intercept of 1.02, 8 

significantly >1 and an attenuation ratio of 0.07 (SE 0.03), suggesting inflation was largely 9 

due to polygenicity (Supplementary Table 3). 10 

We also conducted analyses on chromosome X for a subset of studies with available 11 

data (Supplementary Table 4). No genome-wide significant loci were identified for BE-12 

BROAD nor AN, although one genome-wide significant locus was identified for BE-13 

NARROW (Supplementary Results, Supplementary Figure 15, Supplementary Table 5). 14 

Given known sex differences in eating disorders, and mostly female cases in our 15 

data (96% in BE-BROAD, 94% in AN), we carried out female-only GWASs as sensitivity 16 

analyses. Results were similar to the main analyses, with differences attributable to the 17 

reduction in sample size (Supplementary Results, Supplementary Table 6). 18 

 19 

Figure 1 approximately here 20 

Table 2 approximately here 21 

 22 

Genetic relationship between eating phenotypes and other traits 23 

We assessed the genetic similarity of BE-BROAD and AN through examining their 24 

SNP-rg, as well as their SNP-rg with other traits, and via case-case GWAS 16. The SNP-rg 25 

between BE-BROAD and AN was 0.46 (SE 0.04, P=3.44x10-30), indicating moderate genetic 26 

overlap (Supplementary Table 7). Case-case GWAS leverages a genetic distance measure 27 
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representing the average squared difference in allele frequency at causal SNPs 16. The 1 

genetic distance was highest between individuals with AN and controls (0.46), similar to that 2 

between case groups (0.40), whereas the genetic distance between individuals with BE-3 

BROAD and controls was smaller (0.25, Figure 2). We identified case-divergent loci on 4 

chromosomes 1, 3, and 5, overlapping with independent loci identified in the AN GWAS 5 

(Figure 1), suggesting that some loci differentiating AN from controls also differentiate AN 6 

from BE-BROAD. 7 

 8 

Figure 2 approximately here 9 

 10 

We used LDSC to calculate pairwise SNP-rg for both BE-BROAD and AN with 225 11 

traits including psychiatric, personality, metabolic, and anthropometric traits (Table 3, 12 

Supplementary Table 8). We generally observed positive SNP-rg of BE-BROAD with 13 

psychiatric traits and anthropometric phenotypes, except for persistent thinness and pubertal 14 

growth which displayed negative SNP-rg. In contrast, significant SNP-rg
 with metabolic traits 15 

were absent for BE-BROAD except for BMI-adjusted fasting insulin. We validated and 16 

extended previously observed SNP-rg patterns with AN 6 (Table 3, Supplementary Table 8). 17 

We found positive SNP-rg across psychiatric disorders, as well as with neuroticism, 18 

educational attainment, and physical activity. We observed negative SNP-rg across 19 

anthropometric traits, and notably, a non-significant SNP-rg with persistent thinness. 20 

Metabolic SNP-rg mirrored Watson et al., with predominantly negative SNP-rg, except for 21 

total cholesterol in high-density lipoprotein 6. 22 

Next, we tested for significant differences between the SNP-rg of BE-BROAD and 23 

SNP-rg of AN with other traits (Figure 3, Supplementary Figure 16, Supplementary Table 9). 24 

Most psychiatric and behavioural traits and disorders showed similar SNP-rg with BE-25 

BROAD and AN. However, attention deficit/hyperactivity disorder (ADHD) showed greater 26 

SNP-rg (P=1.06x10-7) with BE-BROAD than with AN, and obsessive-compulsive disorder 27 
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showed greater SNP-rg (P=4.79x10-5) with AN than with BE-BROAD. BE-BROAD was 1 

positively correlated with Alcohol Use Disorder Identification Test problem items, four 2 

smoking-related phenotypes, and general risk tolerance, while AN was not (P≤4.83x10-7). 3 

AN was negatively correlated with automobile speeding propensity, while BE-BROAD was 4 

not (P=1.21x10-4). 5 

BE-BROAD and AN also diverged in their associations with anthropometric and 6 

metabolic traits. For example, BE-BROAD was positively correlated with waist-to-hip ratio 7 

while AN was negatively correlated (P=2.05x10-31). BE-BROAD showed a stronger pattern of 8 

SNP-rg with certain socio-demographic traits than AN ( P<2x10-4), displaying negative SNP-9 

rgs with age at menarche and age at first birth in females, and positive SNP-rgs with social 10 

deprivation and loneliness. In contrast, AN showed no significant SNP-rg with these traits but 11 

was more strongly positively associated with educational traits such as college/university 12 

completion than was BE-BROAD. 13 

 14 

Figure 3 approximately here 15 

Table 3 approximately here 16 

 17 

The genetic signal in our BE-BROAD GWAS may partly be influenced by AN, given 18 

that 18% of our BE-BROAD cases had (known) AN (Supplementary Table 10). As a 19 

sensitivity analysis, we conducted an additional BE-BROAD GWAS, excluding cohorts that 20 

specifically focused on AN recruitment (Supplementary Results). The SNP-rg between BE-21 

BROAD and the reduced GWAS did not differ from unity (0.96, SE=0.07), but SNP-rgs with 22 

anthropometric traits were stronger in the reduced GWAS, suggesting that AN cases with BE 23 

may mask BE-anthropometric genetic associations (Supplementary Figure 17, 24 

Supplementary Table 11). 25 
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Role of BMI genetics  1 

The role of BMI in eating disorders is complex, with low BMI being pathognomonic of 2 

AN and individuals with binge eating disorder often being overweight 1. If the genetics of BMI 3 

were the only genetic cause of BE and AN (in opposite directions), then our GWASs would 4 

just be proxy GWASs for BMI. To assess this, we applied GWAS-by-subtraction to remove 5 

the genetic variance of BMI from BE-BROAD and from AN separately 17. We modelled a 6 

factor shared between each eating phenotype and BMI, and a non-BMI factor only loaded on 7 

by the eating phenotype. The shared factor explained 12% (SE=2.7%) of genetic variance in 8 

BE-BROAD, leaving 88% (SE=7.9%) accounted for by the non-BMI factor. In AN, the shared 9 

factor accounted for 10% (SE 1.4%) of genetic variance, leaving 90% (SE 5.5%) accounted 10 

for by the non-BMI factor. GWASs of the non-BMI factor for BE-BROAD and for AN 11 

generally resulted in larger p-values for lead SNPs, but larger effect sizes in the same 12 

direction as the original GWAS (Figure 1, Supplementary Table 12). In pairwise SNP-rg 13 

analyses of the non-BMI component of BE-BROAD and AN, SNP-rg with psychiatric 14 

disorders typically remained stable or slightly increased relative to the respective full GWAS, 15 

whereas SNP-rg with anthropometric and metabolic traits were typically attenuated 16 

(Supplementary Figure 18, Supplementary Table 13). 17 

We also conducted exploratory two-sample Mendelian randomisation (MR) analyses 18 

of each eating phenotype with BMI, testing causal effects in both directions. We used SNPs 19 

in linkage equilibrium as genetic instruments, with P<5x10-6 for BE-BROAD and AN, and 20 

P<5x10-9 for BMI 18. For each analysis, we used the full BE-BROAD or AN GWAS, and the 21 

GWAS of the respective non-BMI component (Supplementary Results, Supplementary Table 22 

14). Significant results were found in both directions between increased BE-BROAD risk and 23 

increased risk for higher BMI. BE-BROAD was still associated with increased risk for higher 24 

BMI when using just the non-BMI component. When examining the effect of BMI on the non-25 

BMI component of BE-BROAD, OR was consistently >1, but the different methods were not 26 

consistently significant. Significant results were found in both directions between increased 27 
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risk of AN and decreased BMI. However, the non-BMI component of AN risk was not 1 

associated with BMI, and results were inconsistent across MR methods when examining the 2 

effect of BMI on the non-BMI component of AN. 3 

 4 

Genetically-regulated gene expression 5 

We used S-PrediXcan 19 to identify predicted genetically-regulated gene expression 6 

associated with our phenotypes (Supplementary Figure 19; Supplementary Table 15). For 7 

BE-BROAD, two gene-tissue associations were significant at the experiment-wide threshold 8 

(PRKAR2A-Sigmoid colon and KLHDC8B-Heart, atrial appendage; P<8.32x10-8). In AN, we 9 

observed 300 experiment-wide significant gene-tissue associations (P<8.32x10-8) with 29 10 

unique genes, predominantly from the gene-dense locus on chromosome 3:47-52Mb. 11 

Among the experiment-wide significant associations, 94 were in central nervous system 12 

tissues and 41 in gastrointestinal tissues. Within-tissue significant results for both 13 

phenotypes are described in the Supplementary Results. 14 

We calculated cross-tissue predicted genetically-regulated gene expression using S-15 

MultiXcan 19 to identify apparent tissue-specific associations that are better interpreted as 16 

cross-tissue (Supplementary Results, Supplementary Figure 20, Supplementary Table 16). 17 

Ten genes had significant (P<2.25x10-6) cross-tissue expression in BE-BROAD, four of 18 

which were identified as tissue-level associations (including KLHDC8B but not PRKAR2A). 19 

Similarly, 43 genes showed significant cross-tissue expression in AN, of which 23 were 20 

identified as tissue-level associations. 21 

 22 

Gene-level associations 23 

We used MAGMA v1.10 20 to conduct gene-wise analyses of the aggregate effect of 24 

SNPs mapped to protein-coding genes (Supplementary Table 17); gene-set analyses of 25 

groups of genes with shared functional, biological, or other characteristics (Supplementary 26 

Table 18); and gene-set analyses restricted to genes targeted by medications 27 
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(Supplementary Table 19; Supplementary Results). We also examined enrichment of signal 1 

within drug-sets belonging to the same class of drugs (Supplementary Table 20; 2 

Supplementary Results). For BE-BROAD, MAGMA identified 22 genes significant after 3 

Bonferroni correction (P<2.59x10-6). FTO had the strongest association (P=2.8x10-22), while 4 

9/22 (43%) of the Bonferroni-significant genes were linked to the gene-dense locus on 5 

chromosome 3:47-52Mb. The MAGMA gene set, drug set, and drug-class analysis yielded 6 

no significant results for BE-BROAD. For AN, MAGMA identified 76 significant genes 7 

(P<2.58x10-6). Most (54/76, 71%) were again mapped to chromosome 3:47-52Mb. Gene-set 8 

analysis identified enrichment in three biological pathways, related to the binding targets of 9 

RBFOX1-3 (RNA binding proteins that regulate neuronal alternative splicing 21), and to 10 

mutation-constrained genes with pLI>0.9. Drug-set analysis revealed no significant drug 11 

sets, but antimigraine preparations as a class were significantly associated with AN, 12 

consistent with previous associations between AN and migraine polygenic risk scores  13 

(PRS) 22. 14 

Genes implicated both through proximity (MAGMA) and through effects on gene 15 

expression (S-PrediXcan) are more likely to be functionally relevant than those implicated 16 

through proximity alone 23. Further restricting our MAGMA gene-wise results to genes that 17 

were at least tissue-level significant in S-PrediXcan resulted in seven prioritised genes 18 

across four loci in BE-BROAD, and 38 prioritised genes across eight loci in AN 19 

(Supplementary Table 21; Supplementary Results). 20 

 21 

Tissue and cell-type analyses 22 

We used stratified LDSC 24 to estimate the enrichment of SNP-based heritability for 23 

BE-BROAD and AN among genes specifically expressed in GTEx human tissues 24 

(Supplementary Figure 21, Supplementary Table 22; Supplementary Results) and in cell 25 

types from the Human Brain Atlas (Supplementary Figure 22, Supplementary Table 23) 25,26. 26 

After accounting for multiple testing, no associations were significant. 27 
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Polygenic prediction 1 

We tested whether higher BE-BROAD and AN PRS were associated with a higher 2 

risk of BE-BROAD and AN, using a leave-one-cohort-out design in well-powered cohorts 3 

representative of the ascertainment methods employed in the study (Methods; 4 

Supplementary Table 24). Individuals with 1 SD higher BE-BROAD PRS had an average 5 

odds ratio (OR) of 1.11 for BE-BROAD (average 95% confidence interval [CI] across 6 

cohorts: 1.08–1.14; P range: 2.38x10-15–0.022; Supplementary Figure 23). The average 7 

liability-scale variance explained was 0.32%. Individuals with 1 SD higher AN PRS had an 8 

average OR of 1.50 for AN (average 95% CI 1.42–1.59, all P<2x10-16; Supplementary Figure 9 

23) and AN PRS explained 2.32% liability-scale variance on average. 10 

We additionally tested the cross-ancestry prediction of AN in two East Asian ancestry 11 

cohorts from Korea and Japan. The European AN PRS was positively associated with AN in 12 

the combined Korean and Japanese cohort, with an OR of 1.36 (95% CI 1.09 – 1.70, 13 

P=0.0066), explaining 1.3% of the variance (assuming population prevalence of AN at 14 

1.5%). 15 

Next, we tested whether genetic risk of BE-BROAD and AN were shared across 16 

males and females, using a similar leave-one-cohort-out design. BE-BROAD PRS based on 17 

female-only GWAS were positively associated with BE-BROAD risk in males (OR 1.06–18 

1.20), but not all results were significant, possibly due to low case numbers in some cohorts. 19 

Similarly, AN PRS calculated based on female-only GWAS were positively associated with 20 

AN risk in males (OR 1.07–1.41), but the results were not consistently significant 21 

(Supplementary Figure 24, Supplementary Table 25; Supplementary Results). 22 

We further assessed if BE-BROAD and AN PRS differed across BE and AN 23 

subgroups, comparing control individuals to (a) those with BE-BROAD only; (b) with both 24 

BE-BROAD and AN (BE+AN); and (c) with AN only. Overall, we found both BE-BROAD and 25 

AN PRS to be elevated in all subgroups compared to controls (P≤0.019). Among the 26 

subgroups, the BE+AN and BE-BROAD-only groups did not significantly differ on BE-27 
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BROAD PRS, and typically had a significantly higher BE-BROAD PRS than the AN-only 1 

group (Supplementary Figure 25). The BE+AN and AN-only groups did not significantly differ 2 

from each other on AN PRS, while the BE-BROAD-only group had a significantly lower AN 3 

PRS than both other groups in one cohort, but not in another (Supplementary Figure 25, 4 

Supplementary Table 26; Supplementary Results). 5 

 6 

DISCUSSION 7 

We implicate six genomic loci in BE. These have been previously associated with 8 

smoking 27, risk-taking behaviour 28, and age at menarche 29. Overlap between BE and 9 

impulse-control behaviours was further observed in positive SNP-rg with smoking, general 10 

risk tolerance, and problematic alcohol use. Loss of control is a key component of BE, and 11 

impulse-control behaviours have been associated with binge-type eating disorders  12 

clinically 30–32. Alongside significant polygenic overlap with a range of psychiatric disorders, 13 

our findings imply that BE shares genetic underpinnings with psychiatric disorders and 14 

impulse-control behaviours. 15 

Loci associated with BE-BROAD have also been implicated in anthropometric traits, 16 

including a BMI-related signal near FTO 18,33 that was not associated with AN or its subtypes. 17 

The FTO locus has been studied extensively (summarised in Loos and Yeo 34), but it has 18 

been challenging to determine the causal mechanism that contributes to a high BMI 34. One 19 

study found that FTO was related to BE independent of BMI 35, and suggested that BE could 20 

mediate the pathway between FTO and a high BMI. Together with our results, this implies 21 

that the relationship between FTO and high BMI could result partly from binge eating 22 

behaviours. Further research should examine whether broader disordered eating behaviours 23 

mediate the relationship between FTO and high BMI. 24 

 25 

For AN, we validated six previously identified loci, identified two new loci, and 26 

identified one locus for AN-R. The four single-gene loci identified in Watson et al. 6 remained 27 
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genome-wide significant, suggesting that genes located in these regions—CADM1, MGMT, 1 

FOXP1, PTBP2—may warrant further investigation in the aetiology of AN 36. The AN-R-2 

identified locus narrowly missed genome-wide significance in AN (P=5.89x10-8) and has 3 

previously been implicated in schizophrenia 37. The locus contains several genes, but only 4 

DLX1 was indicated by both proximity-based and expression-based gene mapping. DLX1 is 5 

differentially expressed in the brain and may be involved in several processes of neural 6 

development 38. Further studies are needed to confirm that DLX1 is implicated in AN-R 7 

aetiology, given the multigenic nature of the locus. Our gene-level results should generally 8 

be viewed cautiously, as greater power is needed to effectively fine-map associated loci and 9 

link causal variants to genes. 10 

Despite increasing our effective sample size for AN by 64% since our previous  11 

freeze 6, we identified only two new loci, and two previously implicated loci were no longer 12 

genome-wide significant. We speculate that this is because our new cohorts were primarily 13 

population-based and used more lenient case criteria compared to the clinical diagnoses 14 

and targeted AN-specific recruitment previously used 39. Consistent with this, AN PRS 15 

typically captured less variance in AN in new cohorts (Supplementary Results, 16 

Supplementary Table 24). Genetic signal also tends to become more heterogeneous as 17 

GWAS sample sizes increase 40,41, although none of the lead SNPs associated with AN 18 

showed heterogeneous effects (Supplementary Figures 7-14). 19 

 20 

We have previously hypothesised that AN is a metabo-psychiatric disorder 6—this 21 

study yields for the first time the ability to investigate shared and distinct metabolic and 22 

psychiatric components across multiple eating phenotypes. BE-BROAD has typical genetic 23 

features of a psychiatric disorder, including significant SNP-rg with psychiatric traits akin to 24 

previous findings 6,7,22,42. The SNP-rg pattern for BE-BROAD is similar to that of AN, with 25 

notable exceptions. AN had a positive SNP-rg with obsessive-compulsive disorder, whereas 26 

BE-BROAD showed no significant association. Conversely, BE-BROAD was positively 27 
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genetically correlated with ADHD, whilst AN showed no significant association. However, 1 

there was a significant positive SNP-rg between ADHD and non-BMI AN, suggesting that 2 

opposing SNP-rgs of AN and ADHD with BMI were previously masking this association. 3 

We observed some key differences for SNP-rgs with non-psychiatric traits. BE-4 

BROAD displayed a significantly stronger, negative SNP-rg with age at menarche whilst AN 5 

showed no genetic overlap, consistent with previous research that showed early-onset AN 6 

was negatively associated with age at menarche, but typical-onset AN was not 43. Earlier 7 

age at menarche has been associated with increased impulse-associated traits like 8 

substance use and risky behaviour 44, and with BMI 45. Both impulsivity and BMI are often 9 

higher in those who binge eat 1,30,31. Observational studies find that later age of menarche is 10 

associated with AN 44,46; however, disentangling this from the effects of starvation and low 11 

body weight is difficult. Significant SNP-rgs between BE-BROAD and anthropometric traits 12 

were positive compared with the negative SNP-rgs observed in AN 22,42. We also validated 13 

our previous finding that significant SNP-rgs with AN are concentrated in metabolic-related 14 

traits 6, in contrast to BE-BROAD.  15 

 16 

Eating disorders and their component features share genetic factors with 17 

anthropometric traits, but these effects act in opposite directions depending on the 18 

presentation. To investigate this further, we assessed BE-BROAD and AN after subtracting 19 

the genetic component each shares with BMI. The BMI component accounted for 12% of the 20 

genetic variance of BE-BROAD and 10% of AN, despite low BMI being a diagnostic 21 

requirement for AN. The low variance explained by the BMI component argues that neither 22 

our AN nor BE-BROAD GWAS are BMI GWAS by proxy. This is further supported by the 23 

FTO locus association with BE-BROAD, which is observed in AN-ascertained cohorts where 24 

affected individuals are likely to have lower BMI than unaffected individuals. Consistent with 25 

previous literature 47, we also found no evidence for a genetic overlap between persistent 26 
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thinness and AN, indicating that the cognitive-behavioural component of AN distinguishes 1 

these low-BMI phenotypes on a genomic level.  2 

However, BMI is a blunt measure of body composition 48, and its relationship with 3 

eating disorders is complicated, with evidence that the negative SNP-rg between AN and 4 

BMI is driven by genetic enrichment for AN risk in females with lower BMI, rather than a 5 

uniform linear relationship across BMI 49. Both BE and AN are heterogeneous conditions, 6 

and subtypes may have differing relationships with BMI. Subtracting the BMI component 7 

from our AN and BE-BROAD GWASs affords tentative insights into the physiological aspects 8 

of these illnesses, but BMI itself has a partly behavioural aetiology 24. More sophisticated 9 

analyses with a wider range of body composition measurements and eating disorder 10 

presentations (including atypical AN in the normal or high BMI range) will provide deeper 11 

understanding. 12 

 13 

We present the first GWAS meta-analysis of BE, accompanied by the largest 14 

investigation of AN and AN subtypes to date, with chromosome X analysed for all 15 

phenotypes. We have extended eating disorder genetic research beyond AN alone and 16 

demonstrated that BE is a psychiatric phenotype with distinctive genetic relationships with 17 

external traits. Nonetheless, readers should consider the following limitations. Our analyses 18 

only considered individuals of European ancestry, limiting their generalisability. We analysed 19 

PRS in two small East Asian cohorts, but used European prevalence estimates to convert 20 

risk to the liability scale, potentially introducing bias. Differences in population structure, 21 

genetic architecture, and environmental factors, such as lower average BMI in Korean and 22 

Japanese populations 50, could influence the cross-ancestry prediction of AN. More GWAS 23 

and PRS studies in East Asian populations are required to improve the accuracy of genetic 24 

risk predictions and our understanding of AN genetics in these populations.  25 

This limitation extends to other global ancestries and should be considered from both 26 

phenotypic and genotypic perspectives 51. The historic focus of eating disorder studies on 27 
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females of European descent has influenced disease characterization, potentially leading to 1 

certain diagnostic criteria being over- or under-represented. Prioritizing variants common in 2 

European populations may prevent the genetic architecture of eating disorders being fully 3 

characterised. To address this, ongoing research efforts aim to enhance the generalisability 4 

and applicability of findings across a wider range of individuals through global data collection 5 

across all populations experiencing eating disorders. 6 

Given the known diagnostic crossover between eating disorders, cohorts that only 7 

contributed cross-sectional diagnoses or symptoms are unable to account for later 8 

development of a disorder or symptom; for example, an individual with AN-R might go on to 9 

develop AN-BP 3. It is not possible to fully mitigate this limitation. However: (1) many of our 10 

cohorts include individuals beyond the typical age of diagnosis, making new diagnoses or 11 

diagnostic crossover less likely; (2) hidden diagnostic crossover likely contributes to false 12 

negatives and under-estimation of differences between GWAS, rather than introducing false 13 

positives 52; and (3) our previous work has shown that rates of diagnostic contamination (a 14 

similar effect to hidden diagnostic crossover) would need to occur at extremely high levels to 15 

affect locus discovery 53.  16 

Despite our best efforts at harmonisation, heterogeneity might exist within the 17 

phenotypes due to factors such as distinct methods of ascertainment. Ideally, one approach 18 

to ascertainment would be used, such as structured diagnostic interviews within speciality 19 

clinics. However, using multiple ascertainment approaches can increase sample size and 20 

thus power despite the resulting heterogeneity. Fourth, our sample is mostly female, and 21 

results may not necessarily generalise to those who are not female. Finally, although 22 

strongly associated with BE-BROAD and AN risk, PRS remain very weak predictors of BE-23 

BROAD and AN status. Combining PRS with other risk factors is needed to further improve 24 

prediction accuracy of BE-BROAD and AN. 25 

Historically, binge-type eating disorders have been overshadowed by research on 26 

AN, despite their higher prevalence. This paper redresses that imbalance. We identified six 27 
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genetic loci relating to broadly defined BE, validated six loci related to AN, reported two 1 

novel loci, and found one locus related to the restricting subtype of AN. We demonstrate that 2 

BE is genetically related to several other psychiatric phenotypes, with both shared and 3 

distinct patterns compared to AN, providing genetic substantiation of clinically-observed 4 

comorbidity patterns. GWAS meta-analyses of all major eating disorders (AN, bulimia 5 

nervosa, binge eating disorder, avoidant/restrictive food intake disorder) and transdiagnostic 6 

behaviours (e.g., BE, restriction) will further refine our understanding of shared and unique 7 

genetic features that distinguish presentations and inform a genetically guided nosology of 8 

eating disorders 54. 9 

 10 

Data availability 11 

Individual level genotype data (except in countries where sharing of individual level 12 

data is prohibited by national law) and summary statistics used in this study are available to 13 

bona fide researchers working in collaboration with a member of the Eating Disorders 14 

Working Group of the PGC via secondary analysis proposals (https://pgc.unc.edu/for-15 

researchers/data-access-committee/data-access-information/). 16 

 17 

Summary statistics from this work will be made available via Figshare and the PGC 18 

website on publication (https://pgc.unc.edu/for-researchers/download-results/). 19 

 20 

Code availability 21 

 Code underlying this work will be made available on GitHub 22 

(https://github.com/psychiatric-genomics-consortium/PGC3_EAD) on publication. 23 
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Tables 

Phenotype Inclusion criteria:  
Self-report or questionnaires 

Inclusion criteria: 
Diagnostic codes 

BE-BROAD 
 
Binge eating 
broadly defined  
 
(incl. BE-
NARROW) 

1. Eating an unusually large amount of food in a short period of 
time with loss of control. Frequency and duration criteria not 
required, or;   
2. If assessed by a single item like “Have you ever experienced 
binge eating?”*, or;  
3. A self-reported diagnosis of bulimia nervosa or binge eating 
disorder, confirmation by healthcare professional not required**.  

307.51  
(ICD-9, DSM-III-R,  
DSM-IV) 
F50.2, F50.3  
(ICD-10) 
307.51 [F50.2]  
(DSM-5) 
307.51 [F50.3]  
(DSM-5) 
F50.81  
(ICD-10-CM) 

BE-NARROW 
 
Binge eating 
narrowly defined 

1. Eating an unusually large amount of food in a short period of 
time with loss of control, and these episodes occurred on 
average at least once a week for at least three months, or;  
2. A clinical diagnosis of bulimia nervosa or binge eating disorder 
via hospital/register records or a structured clinical interview, or;  
3. A self-reported diagnosis of bulimia nervosa or binge eating 
disorder with confirmation by a healthcare professional. 

307.51  
(ICD-9, DSM-III-R,  
DSM-IV) 
F50.2  
(ICD-10) 
F50.81  
(ICD-10-CM) 
307.51 [F50.2]  
(DSM-5) 

AN 
 
AN - no subtype 
specified 
 
(incl. AN-R and 
AN-BP) 

1. A clinical diagnosis of AN / AN binge eating/purging subtype / 
AN restricting subtype via hospital/register records, structured 
clinical interviews, or online questionnaires based on 
standardised criteria, or;  
2. A self-reported diagnosis of AN / AN binge eating/purging 
subtype / AN restricting subtype, confirmation by healthcare 
professional not required. 
 
Note: atypical AN (without significantly low body weight) was not 
specifically excluded from our analyses, but has been historically 
ill-defined and was not ascertained for in most cohorts. As such, 
our AN data primarily reflect typical AN. 

306.50  
(ICD-8) 
307.1  
(ICD-9, DSM-III-R, DSM-
IV) 
F50.0  
(ICD-10) 
F50.1  
(ICD-10) 
307.1 [F50.1]  
(DSM-5) 
 
 

AN-R 
 
AN -  
restricting 
subtype 

1. A clinical diagnosis of AN restricting subtype via 
hospital/register records, structured clinical interviews, or online 
questionnaires based on standardised criteria, or;  
2. A self-reported diagnosis of AN restricting subtype, 
confirmation by healthcare professional not required 

F50.01  
(ICD-10) 
307.1 [F50.01]  
(DSM-5) 

AN-BP 
 
AN - binge 
eating/ purging 
subtype 

1. A clinical diagnosis of AN binge eating/purging subtype via 
hospital/register records, structured clinical interviews, or online 
questionnaires based on standardised criteria, or;  
2. A self-reported diagnosis of AN binge eating/purging subtype, 
confirmation by healthcare professional not required 

F50.02  
(ICD-10) 
307.1 [F50.02]  
(DSM-5) 

Controls 1. No history of any eating disorder and no history of binge 
eating (broadly or narrowly defined), or;  
2. No history of any eating disorder, or;  
3. Unscreened (i.e., these individuals may have had an eating 
disorder or binge eating).  

 

Table 1: Phenotype definitions. Diagnostic codes are shown with coding system in round brackets, 
and equivalent codes in square brackets. Control definitions are shown in order of preference.  

Footnotes: *If assessed with terms such as “psychological overeating”, “compulsive eating”, etc., 
these individuals will not be included as BE-BROAD cases. **If Other Specified Feeding or Eating 

Disorder or Eating Disorder Not Otherwise Specified is diagnosed, these are included only if clearly 
stated ‘subthreshold bulimia nervosa’ or ‘subthreshold binge eating disorder’. 
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Phenotype Locus CHR Locus Start Locus End Lead SNP P REF/
ALT OR SE 

ALT 
Freq 

Cases 

ALT Freq 
Controls INFO Previously  

associated Genes 

BE- 
BROAD 

1 1 74,977,295 75,014,362 rs7541513 2.65x10-9 G/A 1.05 0.009 0.427 0.425 0.952 - LRRC53 / TNNI3K 

2 3 117,420,697 117,953,697 rs1456193 3.25x10-8 T/C 1.06 0.011 0.808 0.802 0.996 - Intergenic 

3 11 93,171,140 93,231,940 rs2925354 4.91x10-8 G/A 0.93 0.013 0.107 0.112 0.995 - DEUP1 / SMCO4 

4 12 50,169,080 50,285,780 rs7953534 1.40x10-8 G/A 1.05 0.009 0.351 0.333 0.985 - Multigenic 

5 16 53,797,904 53,845,494 rs11642015 2.97x10-17 C/T 1.07 0.009 0.429 0.417 1.000 - FTO 

6 18 57,730,978 57,914,978 rs66723169 5.02x10-9 C/A 1.06 0.010 0.254 0.209 0.995 - Intergenic 

AN 

1 1 96,700,455 97,285,455 rs10747478 1.43x10-8 T/G 0.94 0.011 0.570 0.587 0.998 Yes20 PTBP2 

2 3 47,501,450 51,741,450 rs113519699 2.86x10-18 A/C 1.18 0.019 0.102 0.087 0.997 Yes20 Multigenic 

3 3 70,602,234 71,074,242 rs9310201 3.12x10-12 A/T 1.08 0.011 0.427 0.408 0.982 Yes20 FOXP1 

4 5 24,868,440 25,300,440 rs6872919 1.07x10-9 A/C 1.07 0.011 0.570 0.532 0.997 Yes20 Intergenic 

5 10 75,850,972 76,524,972 rs10740439 1.91x10-9 C/T 0.93 0.012 0.711 0.716 0.994 No Multigenic 

6 10 131,274,055 131,459,255 rs12762024 3.28x10-9 G/C 1.07 0.011 0.447 0.455 0.995 Yes20 MGMT 

7 11 114,997,256 115,284,956 rs6589488 9.80x10-9 A/T 0.91 0.016 0.846 0.875 0.990 Yes20 CADM1 

8 12 17,635,314 17,965,314 rs12817084 8.93x10-9 T/C 1.10 0.011 0.115 0.117 0.991 No Intergenic 

Table 2: Association statistics for genome-wide significant loci for BE-BROAD and AN. Loci are numbered sequentially within-analysis from 
chromosome 1 to chromosome X. Base pair start and end positions correspond to hg19. Odds ratios (OR) are given relevant to the ALT allele. 
Genes are listed if at least one transcript in GENCODE version 47 lies at least partially within the locus, with >3 genes defined as multigenic.
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Trait Category PMID rg 
(AN) 

SE 
(AN) 

P  
(AN) 

rg  
(BE) 

SE  
(BE) 

P  
(BE) 

BMI Anthropometric 30239722 -0.31 0.020 2.37x10-56 0.36 0.032 1.94x10-28 

Body fat % Anthropometric 30593698 -0.35 0.028 2.71x10-36 0.20 0.042 2.65x10-6 

Fat free mass Anthropometric 30593698 -0.15 0.022 2.93x10-11 0.30 0.034 6.92x10-19 

Fat mass Anthropometric 31852892 -0.32 0.023 3.63x10-43 0.31 0.035 1.36x10-18 

Persistent thinness Anthropometric 30677029 0.11 0.074 0.123 -0.46 0.110 2.37x10-5 

Pubertal growth (height 
diff, 8 years-adult) Anthropometric 23449627 -0.03 0.053 0.606 -0.37 0.079 3.08x10-6 

Severe early-onset 
obesity Anthropometric 30677029 -0.11 0.059 0.0587 0.48 0.080 1.40x10-9 

Waist-hip ratio Anthropometric 30239722 -0.25 0.021 1.72x10-34 0.19 0.034 1.37x10-8 

Waist-hip ratio (BMI-adj) Anthropometric 30239722 -0.09 0.020 9.33x10-6 -0.05 0.033 0.119 
Fasting insulin (age- & 

sex-adj) Metabolism 33402679 -0.30 0.048 2.79x10-10 0.15 0.069 0.0292 

Fasting insulin (BMI-adj) Metabolism 34059833 -0.17 0.035 9.62x10-7 -0.29 0.047 6.29x10-10 

HbA1c Metabolism 28898252 -0.14 0.042 6.00x10-4 -0.03 0.053 0.5242 

HbA1c (BMI-adj) Metabolism 34059833 -0.16 0.034 5.22x10-6 0.01 0.044 0.765 

Type 2 diabetes Metabolism 30297969 -0.18 0.024 1.76x10-14 0.11 0.040 6.10x10-3 

ADHD Psychiatric  36702997 0.07 0.029 0.0126 0.31 0.042 2.20x10-13 

Autism Psychiatric  32747698 0.17 0.044 1.00x10-4 0.29 0.057 3.96x10-7 

Bipolar disorder Psychiatric  34002096 0.25 0.027 3.80x10-21 0.23 0.035 4.22x10-11 

Insomnia Psychiatric  30804565 0.10 0.033 2.90x10-3 0.21 0.044 2.02x10-6 

MDD Psychiatric  39814019 0.30 0.025 1.04x10-33 0.39
  0.031 1.35x10-36 

OCD Psychiatric  28761083 0.48 0.069 2.85x10-12 0.08 0.081 0.322 
Probable anxiety 

diagnosis Psychiatric  31748690 0.28 0.039 1.42x10-12 0.32 0.060 1.03x10-7 

PTSD Psychiatric  33510476 0.11 0.049 0.0274 0.24 0.062 1.00x10-4 

Schizophrenia Psychiatric  35396580 0.24 0.021 4.85x10-30 0.23 0.033 7.04x10-12 

General risk tolerance Behavioural 30643258 0.00 0.028 0.991 0.21 0.040 6.76x10-8 

Loneliness Behavioural 31518406 0.13 0.032 4.96x10-5 0.37 0.044 4.14x10-17 

Physical activity Behavioural 36071172 0.19 0.034 5.87x10-8 0.09 0.046 0.0633 
Educational attainment 

(years) 
Socio- 

demographic 30038396 0.25 0.022 1.25x10-29 0.04 0.030 0.1417 

AUDIT-P Substance use 30336701 0.01 0.040 0.870 0.37 0.057 7.00x10-11 

Cannabis use disorder Substance use 33096046 0.02 0.046 0.610 0.30 0.063 2.78x10-6 

Heavy smoker Substance use 28166213 -0.04 0.039 0.255 0.30 0.048 3.82x10-10 

Lifetime cannabis use Substance use 30150663 0.22 0.038 8.48x10-9 0.32 0.051 6.36x10-10 

Table 3: A representative subset of significant genetic correlations of BE-BROAD and AN with 
external traits. Note. The full set of genetic correlations can be found in Supplementary Table 8. 
PMID = PubMed ID of GWAS for external trait, BMI = body mass index, adj = adjusted, ADHD = 

attention deficit/hyperactivity disorder, MDD = major depressive disorder, OCD = obsessive-
compulsive disorder, PTSD = post-traumatic stress disorder, AUDIT-P = Alcohol Use Disorder 

Identification Test Problem items.    

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 8, 2025. ; https://doi.org/10.1101/2025.01.31.25321397doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.31.25321397
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

38 

Figures 

a) 

 

 

 

 

 

 

 

 

 

 

b) 

 

 

 

 

 

 

 

 

 

 
 
Figure 1: Miami plots showing results from the BE-BROAD (top) and AN (bottom) meta-analyses. 

The dotted red line is the genome-wide significance threshold (P≤5x10-8).  
a. Main GWAS analyses, with variants reaching genome-wide significance coloured in blue if 

significant in the anorexia nervosa GWAS and in purple if significant in the binge eating broad GWAS. 
Variants reaching genome-wide significance in case-case GWAS of BE-BROAD vs AN are coloured 

in red. 
b. GWAS-by-subtraction analyses, showing results from the non-BMI genetic component. Variants 
reaching genome-wide significance coloured in blue for anorexia nervosa non-BMI component and 

purple in binge eating non-BMI component.  
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Figure 2: Genetic distance between cases and controls of BE-BROAD and AN estimated by case-

case GWAS. The genetic distance, !𝑚 × 𝐹!",$%&'%( 	 is calculated by taking the square root of the 
product of m, the number of independent causal variants estimated here as 10,000 based on the 

polygenic nature of BE-BROAD and AN, and 𝐹!",$%&'%(, the average normalized squared differences in 
allele frequencies, derived based on the SNP-based heritabilities, genetic correlations, and population 

prevalences of the two traits
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Figure 3: Genetic correlations (rg) of selected external traits with BE-BROAD and AN, split by those 

that differ significantly between the eating phenotypes (left) and those that do not (right). The rgs were 
computed by Linkage Disequilibrium Score Regression (LDSC). The rg estimates are indicated by the 
dots and standard errors are indicated by the lines on either side of each dot. rg estimates have been 

corrected for multiple testing via the Bonferroni method. Information about the summary statistics 
used in our analysis can be found in Supplementary Table 8.  

BE-BROAD = binge eating broad definition; AN = anorexia nervosa; MDD = major depressive 
disorder; PGC = Psychiatric Genomics Consortium; BMI = Body mass index; F = female; M = male; 

FFM = fat-free mass; AUDIT-P = Alcohol Use Disorder Identification Test problem items 
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METHODS 1 

Ethics  2 

The individual studies that comprise this investigation were conducted with advance 3 

approval by the appropriate Institutional Review Boards or equivalents at the individual study 4 

sites. We provide ethical statements for each study site in the Supplementary Note. This 5 

work represents a secondary analysis with data from these individual studies. 6 

 7 

Summary of cohorts 8 

Detailed descriptions of the ascertainment and definition of cases and controls for 9 

each cohort is provided in Supplementary Table 1. Broadly, we identified cases and controls 10 

based on clinical diagnoses, diagnostic algorithms, and/or self-report questionnaires 39. We 11 

defined controls as individuals without a history of BE and without a history of an eating 12 

disorder, if possible. If this information was unavailable, unscreened controls were included 13 

assuming that the large control numbers would outweigh the impact of misclassified 14 

individuals in the control groups, given the collective lifetime prevalence of eating disorders 15 

is ~5% 15. 16 

We included data from the Eating Disorders Working Group of the Psychiatric 17 

Genomics Consortium (PGC-ED; Supplementary Table 1). These data were restricted to 18 

individuals of European ancestry due to the limited availability of non-European ancestry 19 

samples at the time of analysis—we included two cohorts with individuals of East Asian 20 

ancestry for follow-up cross-ancestry polygenic risk score analyses. In total, we combined 27 21 

European ancestry datasets totalling 14 previously analysed 6 and 13 new cohorts. Data 22 

from cohorts providing individual-level data (n=11) were combined with cohorts that 23 

contributed summary statistics (n=16; Supplementary Table 1). Detailed descriptions of each 24 

of the cohorts are provided in the Supplementary Note. We included data if the total number 25 

of cases for any phenotype prior to quality control was >100. If cases for an individual 26 

phenotype were <50, we excluded that phenotype from analyses. 27 
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We include five different phenotypes: broadly-defined BE (BE-BROAD, 39,279 1 

cases), narrowly-defined BE (BE-NARROW, 15,175 cases), AN (24,145 cases), AN 2 

restricting subtype (AN-R, 2,524 cases), and AN binge eating/purging subtype (AN-BP, 3 

5,245 cases). Detailed phenotypic definitions are provided in Table 1.  4 

 5 

Genotype quality control and imputation 6 

 Approaches to quality control and imputation differed between cohorts, and are 7 

described in detail in the Supplementary Material. 8 

 9 

Association analyses 10 

The statistical model used to conduct the GWAS for each cohort (described in 11 

Supplementary Table 4) depended on the design of the specific cohort. For unrelated 12 

case/control cohorts, we used PLINK2 to conduct logistic regression using an appropriate 13 

number of PCs to account for ancestry as necessary within each cohort (Supplementary 14 

Table 4). For related or imbalanced case/control cohorts we used SAIGE 55 or REGENIE 56. 15 

Note that for whole genome regression in REGENIE step 1, we used a set of pruned SNPs 16 

with MAF>0.01, excluding high LD regions and only including autosomal chromosomes 17 

(PLINK command: --indep-pairwise 1500 150 0.2). Further details on cohort-specific aspects 18 

of association analysis are provided in the Supplementary Methods. 19 

 20 

Post-GWAS processing and quality control 21 

We aligned the summary statistics of each GWAS to the TOPMed reference panel in 22 

Genome Reference Consortium Build 37 (GRCh37/hg19), using variant positions from 23 

ENSEMBL (see URLs). For cohorts that were in GRCh38, we first linked the datasets with 24 

the GRCh38 TOPMed reference panel (see URLs) by chromosome/base pair, then selected 25 

the SNP rsID labels and linked these labels to the GRCh37 TOPMed reference panel, and 26 

finally extracted the GRCh37 chromosome/base pair information for each SNP. Variants 27 
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without a rsID label in the GRCh38 TOPMed reference panel were lifted over to GRCh37 1 

using the liftOver tool (see URLs). After alignment, we applied an INFO and MAF filter to 2 

include SNPs with an INFO score of>0.3 and MAF>0.01 in cases and controls. We then 3 

used DENTIST 57 to remove variants with effects inconsistent with their linkage 4 

disequilibrium pattern with other assessed variants, estimating linkage disequilibrium from 5 

European ancestry individuals in Phase 3 of the 1000 Genomes project.  6 

 7 

Meta-analysis and quality control 8 

We used the post-imputation module of RICOPILI version 2019, Oct. 58 to perform 9 

meta-analyses in METAL 59 using an inverse-variance weighted fixed-effect model. We 10 

defined independent significant SNPs with a genome-wide significant P-value (P<5x10-8) 11 

that were independent (r2<0.6) from each other. We then defined significant genomic loci by 12 

merging LD blocks of these independent significant SNPs if they were close to each other 13 

(<250 kb). Furthermore, we defined independent lead SNPs if independent significant SNPs 14 

were independent of each other at r2<0.1.  15 

We ran a stepwise conditional analysis on our GWAS results to select independently-16 

associated SNPs at each loci using GCTA-COJO 60. For these analyses we used one of our 17 

largest cohorts (usa2) as our reference for linkage disequilibrium. 18 

 19 

Female-only analyses and female-to-male polygenic risk scoring 20 

We conducted a supplementary female-only GWAS for BE-BROAD and AN and 21 

generated female-only PRS using PRS-CS which we applied on male-only datasets with 22 

sufficient data (i.e., n case and n control >100) available. For the BE-BROAD female-only 23 

meta-analysis, all cohorts except usa1 and biov were included, and alsp, moba, and ukd2 24 

were included as male-only target cohorts. For the AN female-only meta-analysis, all cohorts 25 

except itgr, spa1, ukd1, and net2 were included, and ipsy, fngn, and ukb2 were included as 26 

male-only target cohorts.  27 
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SNP-based heritability and distinguishing polygenicity from other sources of inflation 1 

We used linkage disequilibrium score regression (LDSC 61) to estimate SNP-based 2 

heritability (h2
SNP). These estimates were transformed to the liability scale, assuming 3 

population prevalences as follows: BE-BROAD 4.5% 13, BE-NARROW 3.5% 13, AN 1.5% 15, 4 

AN-R 0.8% 15,62, AN-BP 0.7% 15,62. For all analyses using LDSC, we applied an LD reference 5 

panel based on the European subset of the 1000 Genomes Project (1kGP), restricted to 6 

SNPs present in the HapMap3 panel 63. For N, we calculated the sum of effective N across 7 

all cohorts and specified 0.5 for sample prevalence 64. 8 

Test statistics from GWAS of a polygenic trait are expected to be inflated, but 9 

inflation may also be due to spurious SNP associations caused by population stratification 10 

and cryptic relatedness of study participants. We used statistics from LDSC 61 to determine 11 

the source of inflation. Although the LDSC intercept is commonly used to distinguish 12 

polygenicity from spuriously inflated statistics, we calculated the attenuation ratio statistic, 13 

defined as (LDSC intercept–1)/(mean of association chi-square statistics–1), which may be a 14 

less biassed metric compared to the LDSC intercept 14. We included variants with MAF≥0.01 15 

and INFO≥0.6.  16 

 17 

Comparison of the two binge eating behaviour phenotypes 18 

The two BE phenotype definitions balanced phenotypic certainty with sample size—19 

BE-BROAD had a larger sample size and was potentially a better-powered GWAS than BE-20 

NARROW but was likely to be more heterogeneous and could lack specificity to BE. To 21 

determine which phenotype to carry forward to follow-up analyses, we considered the LDSC 22 

intercept and attenuation ratio statistics and calculated the genetic correlation (SNP-rg) 23 

between the two BE phenotypes. Inflation was a more sizable component of the signal in 24 

BE-NARROW (attenuation ratio 0.21 ± 0.06) than in BE-BROAD (0.14 ± 0.04). Furthermore, 25 

the SNP-rg between BE-NARROW and BE-BROAD did not differ from unity (1.00 ± 0.03). 26 
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We therefore concluded that BE-BROAD appropriately captured the common genetic 1 

component of BE with greater statistical power than BE-NARROW.  2 

 3 

Genetic relationship between traits 4 

We used LDSC to calculate SNP-rg with several aims. First, we estimated SNP-rgs 5 

between both BE phenotypes, AN, and AN subtypes to assess the genetic relationships 6 

among these eating phenotypes. Second, we calculated SNP-rg between BE-BROAD/AN 7 

and 225 traits covering eight categories: 1) psychiatric trait or disorder, 2) substance use, 3) 8 

psychological/personality/behavioural, 4) anthropometric, 5) metabolism, 6) blood, 7) 9 

sociodemographic, and 8) somatic trait or disease. We selected these traits from an internal 10 

catalogue based on their power (h2
SNP Z-score>4) 65. To assess statistical significance, we 11 

applied a Bonferroni-corrected P-value threshold of 2.20x10-4 based on 225 traits. If, 12 

according to this threshold, BE-BROAD and/or AN was significantly genetically correlated 13 

with another trait, we used the LDSC block-jackknife procedure (described in more detail in 14 

Appendix S1 of Hübel et al 66) to statistically compare the SNP-rg between BE-BROAD and 15 

AN (Bonferroni-corrected P-value threshold of 2.20x10-4). 16 

 To further investigate the genetic difference between BE-BROAD and AN we used 17 

CC-GWAS 16. CC-GWAS uses GWAS summary statistics to test for allele frequency 18 

differences between cases of two phenotypes, as opposed to a traditional GWAS that tests 19 

for differences between cases and controls. We used BE-BROAD and AN summary 20 

statistics including non-ambiguous SNPs from HapMap 3 with INFO ≥ 0.6 and MAF ≥ 0.01. 21 

We used the liability-scale h2
SNP, the SNP-rg and associated covariate intercept between both 22 

traits as input. We furthermore set the BE-BROAD population prevalence to 4.5% (range 0.1 23 

- 10%) and AN to 1.5% (range 0.1 - 4.3%) and approximated the number of effective loci to 24 

be 10,000–consistent with psychiatric disorder polygenicity 16. We additionally defined the 25 

number of independent CC-GWAS loci with PLINK 1.9 (--clump-p1 5e-8 --clump-p2 5e-8 --26 

clump-r2 0.1 --clump-kb 3000) and defined a genome-wide significant SNP if its P-value 27 
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is<5x10-8 in the CC-GWAS OLS test and P-value<10-4 in the CC-GWAS exact test. Further, 1 

CC-GWAS calculates genetic distances between cases and controls of the two traits using 2 

"𝑚	 × 𝐹!",$%&'%( based on liability-scale h2
SNP, SNP-rg, population prevalence and the number 3 

of independent causal variants of the two traits. 4 

 5 

Influence of BMI 6 

 We used GWAS-by-subtraction 17, an application of genomicSEM 67, in R v4.3.1 68 to 7 

estimate the proportion of variance in BE-BROAD and AN independent of BMI 8 

(Supplementary Methods). Shared genomic covariance across traits is expected due to 9 

pleiotropy. Latent Genomic SEM factors explicitly model this covariance, making results less 10 

influenced by spurious biases than would conditioning on phenotypic traits in a GWAS 69. We 11 

used GWAS summary statistics from BE-BROAD, AN, and BMI 18.  12 

We specified a structural equation model (SEM) that regressed both sets of summary 13 

statistics on a shared variable ("BMI") and a non-BMI variable ("non-BMI") for each eating 14 

phenotypes, respectively (Supplementary Figure 26). Specifically, we specified the two latent 15 

variables as a function of BMI and (e.g.) BE-BROAD: “BMI =~ NA * BEBROAD + start(0.4) * 16 

BMI” and “non-BMI =~ NA * BE-BROAD”. In line with the GWAS-by-subtraction specification 17 

as it has previously been applied 17, we additionally set the variance of the latent variables to 18 

1 and a covariance of 0, and constrained the model so all (co)variance in BMI and BE-19 

BROAD was captured by BMI and non-BMI. We used the diagonally-weighted least squares 20 

estimator, which is the default setting in Genomic SEM 67. Additional computational settings 21 

are shown in Supplementary Table 28. We then regressed the two latent factors on 22 

individual SNPs yielding a GWAS of the latent variables BMI and non-BMI. We subsequently 23 

used LDSC 61 to calculate SNP-rg of the non-BMI factor with all traits identified in initial SNP-24 

rgs. As a sensitivity analysis, we restricted our BE-BROAD sample in our GWAS to cohorts 25 

that were not ascertained for AN, reasoning that this might better capture BE behaviour 26 
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outside of AN. We applied the same GWAS-by-subtraction model on that selection of 1 

cohorts (listed in Supplementary Table 10). 2 

We also conducted exploratory two-sample Mendelian randomisation analyses of 3 

BE-BROAD with BMI and AN with BMI, testing causal effects in both directions. We used 4 

SNPs in linkage equilibrium as genetic instruments, with P<5x10-6 for BE-BROAD and AN, 5 

and P<5x10-9 for BMI. The instrument used for BMI was that suggested by the authors of the 6 

BMI GWAS 18. We repeated analyses using the non-BMI factor GWAS of BE-BROAD and of 7 

AN. We view these Mendelian randomisation analyses as exploratory because SNPs not 8 

passing genome-wide significance were included in the instruments for the eating 9 

phenotypes. To ensure our analyses were robust to potential violations of the assumptions 10 

of Mendelian randomisation, we conducted analyses using multiple methods in R 4.3.2, 11 

including the packages TwoSampleMR, MendelianRandomisation, and MR-PRESSO 12 

(Supplementary Methods) 68,70,71. These were inverse-variance weighted analysis, MR-13 

Egger, mode-based estimation and median-based estimation. We determined the strength of 14 

association of our genetic instruments using the F-statistics 72. We used Cochran's Q-15 

statistic to test for instrument heterogeneity, with P<0.05 indicating heterogeneity 73. To 16 

investigate potential confounding via horizontal pleiotropy, we assessed the deviation of the 17 

MR-Egger intercept from 0, and performed a global bias test in MR-PRESSO. We excluded 18 

from the analysis SNPs identified by MR PRESSO as pleiotropic. We ran further methods 19 

robust to heterogeneity, including the penalised weighted median estimator, the 20 

contamination mixture method, and MR-Lasso 74. We assessed results visually 21 

(Supplementary Methods). 22 

 23 

Identification of gene-tissue associations with eating phenotypes 24 

We used S-PrediXcan 19 to identify genetically regulated gene expression associated 25 

with our phenotypes. We tested the association of gene expression with our eating 26 

phenotypes using available GTEx v8 MASHR 19,75,76 and CommonMind DLPFC 77,78 tissue 27 
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models. MASHR-based PredictDB models use fine-mapping methods for selection of eQTLs 1 

included in the predictor models, improving prediction 19,75,76. We included 45 GTEx v8 2 

MASHR models, removing non-natural tissues (cell lines), tissues with N<100 individuals 3 

(kidney cortex), and testis 79. We performed liftover of our GWAS summary statistics to 4 

hg38, harmonisation, and imputation based on recommended preprocessing by Barbeira et. 5 

al 75 using GWAS tools (see URLs). We established two different Bonferroni significance 6 

thresholds: an experiment-wide threshold, where we corrected for 600,382–602,744 tests 7 

performed across all tissues (P<0.05/TestsTotal = P<8.32x10-8), and a tissue-specific 8 

threshold, where we corrected for varying numbers of tests performed within each tissue 9 

(P<0.05/TestsTissue X, Supplementary Table 15). We performed two-tailed exact binomial tests 10 

for tissue enrichment using binom.test() in R for associations at three different significance 11 

thresholds: experiment-wide significant (P<0.05/TestsTotal), tissue-specific significant 12 

(P<0.05/TestsTissueX), and nominally significant (P<0.05). We reported results with a focus on 13 

central nervous system tissues (brain and cervical spinal cord) and gastrointestinal tissues 14 

(oesophagus, colon, stomach, and small intestine). 15 

 S-MultiXcan is a summary-level method for measuring the joint association of 16 

genetically regulated gene expression across tissues with a phenotype of interest, 17 

leveraging shared eQTLs across tissues 80. Using our GTEx v8 MASHR S-PrediXcan results 18 

as input, along with MASHR models, and harmonised, imputed GWAS summary statistics, 19 

we ran S-MultiXcan on each of our eating phenotypes for all genes (N=22,241). S-MultiXcan 20 

gives as output the p-value for association of multi-tissue gene expression with the trait of 21 

interest (S-MultiXcan P), along with best single-tissue p-value. In order to account for 22 

potential false positive associations, we removed any significant S-MultiXcan associations 23 

where the single best tissue p-value was greater than 1x10-4 80. We set a Bonferroni 24 

significance threshold for our results, correcting for the number of genes tested in our S-25 

MultiXcan analysis (P<0.05/22,241 = 2.25x10-6). 26 
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Gene-wise and gene set analysis, including drug target and drug class analyses 1 

Following a previously published approach 81, we used MAGMA v1.10 20 to test the 2 

association between each phenotype and 1) the aggregate effect of SNPs mapped to 3 

protein-coding genes (gene analysis); 2) groups of genes with shared functional, biological, 4 

or other characteristics (gene-set analysis); 3) a gene-set analysis restricted to genes 5 

targeted by drugs (drug-set analysis) and 4) the enrichment of signal within classes of drug. 6 

We restricted SNPs to those with MAF≥0.01, INFO≥0.6, and which are present in 80% of the 7 

total sample and 50% of the cohorts. We mapped SNPs to protein-coding genes, applying a 8 

35 kb upstream and 10 kb downstream window around hg19 gene positions from Ensembl 9 

release 75 82. We obtained P-values with the multi snp-wise model, which combines the 10 

lowest and mean P-values of all SNPs mapped to the gene. We tested 19,332-19,418 11 

ENSEMBL genes across the five phenotypes and applied a Bonferroni correction of 12 

P<2.60x10-6. We used the 1kGP reference panel for estimating between-SNP LD.  13 

For gene-set analyses, we applied a competitive analysis, which regresses the 14 

phenotype on the mean effect of genes within the gene set, with the mean effect of genes 15 

outside the gene set as a covariate. We defined biological pathways based on gene ontology 16 

and canonical pathways from MSigDB v6.1 and psychiatric pathways identified from the 17 

literature. We tested 7324-7325 pathways across the five phenotypes and applied a 18 

Bonferroni correction of P<6.83x10-6.  19 

For drug-set analyses, we defined drug sets based on drug targets from the Drug-20 

Gene Interaction database DGIdb v4.2.0 83; the Psychoactive Drug Screening Database Ki 21 

DB 84; CheMBL v27 85; the Target Central Resource Database v6.7.0 86; and DSigDB v1.0 87, 22 

all downloaded in October 2020. We applied a competitive analysis and subsequently 23 

grouped the results based on the Anatomical Therapeutic Chemical class of the respective 24 

drugs 88. For drug-class analysis, we first ranked all drug-gene sets according to their 25 

association in the drug-set analysis. We then generated enrichment curves for specific drug 26 

classes, assigning a ‘hit’ if the drug-gene set belonged to the class or a “miss” if it was 27 
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outside the class. We calculated the area under the curve and determined statistical 1 

significance with the Wilcoxon Mann-Whitney test, comparing drug-gene sets within the 2 

class to those outside the class. We applied a Bonferroni correction of P<3.23x10-5 (based 3 

on 1546-1547 drug sets) for the drug-set analysis and P<3.08x10-4 (based on 162 drug 4 

classes) for the drug-class analysis to account for multiple testing.  5 

 6 

Tissue and cell-type specific analyses 7 

To identify relevant tissues and cell-types related to the common genetic risk of BE-8 

BROAD and AN, we performed tissue and cell-type heritability (h2
SNP) enrichment analyses. 9 

First, we analysed the enrichment of h2
SNP in 27 tissues from the GTEx gene expression data 10 

(v8) after excluding tissues with less than 100 donors, non-natural tissues (such as cell 11 

lines), and testis tissues (since it was an expression outlier) 89. Second, we analysed 12 

enrichment of h2
SNP in 31 superclusters and 461 cell clusters based on the single-nucleus 13 

RNA sequencing data including over three million nuclei from around 100 dissections across 14 

the adult human brain 25. Within each expression dataset, we calculated the specificity of 15 

gene expression per tissue or cell type (superclusters and clusters separately), defined as 16 

the expression of each gene (counts per million, CPM) in a tissue or cell type (i.e., the 17 

superclusters and clusters respectively) divided by the total expression of this gene across 18 

all tissues or cell types in the dataset 90. We then used the genes with the top 10% specificity 19 

in each tissue or cell type to perform the heritability enrichment analysis using stratified 20 

LDSC 90,91. Specifically, we compared the per-SNP heritability of SNPs within 100kb 21 

flankings of the top 10% specific genes and the per-SNP heritability of other SNPs, using the 22 

baseline model that adjusted for 53 baseline annotations 91. We then used the coefficient z-23 

scores to calculate the one-sided p-values. Finally, we accounted for multiple comparisons 24 

by calculating FDR per trait for the GTEx dataset (27 tests), the human brain superclusters 25 

(31 tests) and clusters (461 tests) respectively. 26 
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Polygenic prediction 1 

We used PRS-CS 92 to generate polygenic risk scores (PRS) for BE-BROAD and AN. 2 

First, we performed leave-one-cohort-out (LOO) analyses to generate LOO GWAS summary 3 

statistics from all cohorts except the target cohort and used this as the base data to calculate 4 

individual-level PRS in each target cohort. We included non-ambiguous SNPs with INFO≥0.6 5 

and MAF≥0.01 in the PRS calculation. We used the 1000 Genomes Project Phase 3 EUR 6 

reference as the LD reference panel and provided median sample size per LOO meta-7 

analysis as input for PRS-CS. Posterior SNP effect size estimates from PRS-CS were then 8 

combined across chromosomes to calculate individual PRS via PLINK (--score 2 4 6 sum) 93. 9 

We standardised the individual PRS by applying the scale function in R (version 4.3.2) 68. 10 

Using the standardised PRS scores, we first assessed the proportion of variance explained 11 

by PRS for each phenotype through calculating the nested Nagelkerke’s pseudo-R2 (that is, 12 

the pseudo-R2 of the full model minus that of the model excluding the PRS) 94. The inclusion 13 

of target cohorts for each phenotype was based on the effective sample size (Neff 14 

half>1000), study characteristics, and availability of individual-level data (more detailed 15 

information in the Supplementary Methods). Logistic regression was performed for BE-16 

BROAD and AN PRS on BE-BROAD and AN, adjusting for cohort-specific PCs. We then 17 

converted the variance explained by each PRS (R2) to the liability scale using population 18 

prevalences of BE-BROAD and AN as used for LDSC 95. In addition, we divided individuals 19 

into ten PRS decile groups and assessed their relative risk of BE-BROAD and AN compared 20 

to the group of individuals in the lowest PRS decile. We also examined predictive 21 

performance of each PRS regarding their sensitivity, specificity, and precision to predict BE-22 

BROAD and AN status using the pROC 96 and pracma 97 packages in R by comparing the 23 

area under the curve (AUC) of the receiver operating characteristic (ROC) curve and the 24 

precision recall (PR) curve of the full model including PRS and PCs as predictors against the 25 

null model including PCs only as predictors.  26 
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We used female-only GWAS summary statistics as base data in PRS-CS 92 to assess 1 

whether female BE-BROAD PRS could be applied to male individuals to assess their BE-2 

BROAD risk in three cohorts (alsp, moba, ukd2, Ncase_male_total=1,055, Ncontrol_male_total=38,046). 3 

The same analysis was performed to examine the association of female AN PRS with male 4 

AN risk in three cohorts (ukb2, fngn, ipsy, Ncase_male_total=1,524, Ncontrol_male_total=388,891). 5 

We assessed whether the levels of BE-BROAD and AN PRS differed across 6 

subgroups, including a) those with BE-BROAD only, b) those with both BE-BROAD and AN, 7 

and c) those with AN only. Target cohorts for this analysis included cohorts with sufficient 8 

data available on some/all subgroups (Supplementary Methods, Supplementary Table 1). 9 

Specifically, we selected aunz and sedk to assess individuals with both BE-BROAD and AN 10 

and to assess the AN only group. We selected ukb2 and ukd2 for assessing BE-BROAD and 11 

AN PRS levels in all subgroups. We assessed differences between subgroups and controls 12 

by performing linear regression on each PRS for each subgroup compared to controls, 13 

adjusting for cohort-specific genetic PCs. In addition to setting controls as the reference 14 

group, we also set different subgroups as the reference group to compare differences in BE-15 

BROAD PRS and AN PRS across different subgroups.  16 

Last, we generated AN PRS from the main meta-analysis – including solely 17 

individuals of European genetic ancestry – and applied this to two East Asian cohorts 18 

(Ncase=77, Ncontrol=117 in a Japanese cohort, Ncase=75, Ncontrol=109 in a Korean cohort). 19 

Korean data were merged with Japanese data from GCAN cohorts. The same pre-20 

imputation quality control and imputation method used for the European cohorts was 21 

conducted. We used the 1000 Genomes Project Phase 3 EUR reference as the LD 22 

reference panel for PRS, as the reference panel should align with the ancestry in the base 23 

GWAS 92. We used the European AN prevalence estimate for liability scale conversion, as 24 

estimates of AN prevalence in East Asia are sparse and what estimates exist are 25 

approximately consistent with estimates in countries with primarily European genetic 26 

ancestries 98. 27 
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Sensitivity analyses using down-sampled BE-BROAD data 1 

A considerable portion (13%) of the cases for the BE-BROAD GWAS includes 2 

individuals who were recruited through studies that focused on AN ascertainment. Even 3 

though the BE-BROAD phenotype is expected to be heterogeneous given its transdiagnostic 4 

nature, we sought to understand the influence of AN on this BE-BROAD phenotype. We 5 

therefore conducted an additional BE-BROAD meta-analysis where we excluded individuals 6 

with BE-BROAD who were identified in cohorts that were specifically ascertained for AN 7 

(e.g., the ANGI cohorts). This resulted in an additional analysis including 87% of the BE-8 

BROAD GWAS, consisting of the following cohorts: sebe, agds, alsp, biov, esbb, fngn, jans, 9 

moba, ukb2, ukd2). We then calculated SNP-rg to compare the genetic relationship of the 10 

“not-ascertained-for-AN” BE-BROAD GWAS and the original BE-BROAD GWAS with 11 

selected traits significantly correlated with the original BE-BROAD GWAS or with the AN 12 

GWAS (hypothesising that AN-related effects may mask or drive SNP-rgs between such 13 

traits and the original BE-BROAD GWAS). 14 

 

URLS 

TopMED Hg37 VCF: https://ftp.ensembl.org/pub/grch37/release-

113/data_files/homo_sapiens/GRCh37/variation_genotype/TOPMED_GRCh37.vcf.gz  

TopMED Hg38 VCF: https://ftp.ensembl.org/pub/grch37/release-

113/data_files/homo_sapiens/GRCh38/variation_genotype/TOPMED_GRCh38.vcf.gz  

LiftOver: https://ftp.ensembl.org/pub/grch37/release-

113/data_files/homo_sapiens/GRCh38/variation_genotype/TOPMED_GRCh38.vcf.gz 

SPrediXcan best practice: https://github.com/hakyimlab/MetaXcan/wiki/Best-practices-for-

integrating-GWAS-and-GTEX-v8-transcriptome-prediction-models 

GWAS tools:  

https://github.com/hakyimlab/summary-gwas-imputation/wiki/GWAS-Harmonization-And-

Imputation  
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